

Filter Systems

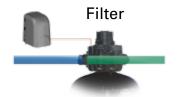
Macrolite Filtration

Experience the Kinetico Difference

Kinetico has rewritten the rules of filtration with Macrolite. The granular, ceramic media has characteristics that provide the best filtration performance at high filtration rates.

Until now, all industrial water filters relied on aggregates like sand and athracite to perform adequate filtration. Why settle for adequate when you can have superior filtration?

Kinetico's Macrolite filtration media is a dynamic solution that will improve your water quality, lower operating costs and reduce waste discharge volumes.


Surface Area

Smooth medias don't "hold" dirt; they just sieve the big "chunks." Macrolite has 100 times the surface area compared to sand, so it can remove more turbidity, hold solids longer and produce better water. The increased surface area means more particle removal at very low micron levels.

Media Weight

Macrolite's lower media weight reduces backwash flow rates for 100 percent bed expansion at a flow rate that is 2/3 or less than other types of filters.

Single-Tank Configuration

Simplex—Uses raw water to backwash, and raw water is available during backwash. This configuration is the most economical to purchase and the most space efficient. It is best suited for processes that do not run in the very early morning hours so the system can backwash without affecting the process.

Multi-Tank Configurations

Duplex, Triplex & Multi-Tank—Use filtered water to backwash. Multi-tank designs are ideal for high flow rates and where treated water must be available at all times under all circumstances. Backwashing with treated water improves the quality of the backwash process resulting in better water quality coming from the filter.

Carbon Filtration (dechlorination, organic, taste and odor removal)—Kinetico uses the highest quality, acid washed, granular activated carbon. Standard carbon selections are for dechlorination at high flow rates; organic removal sizing is based on local water chemistry.

Calcite Filtration (increase pH)—For water with low pH, calcite is used in an up-flow process to raise the pH. Water passes through the bed and slowly dissolves the media adding calcium and carbonate alkalinity. Water with a negative Langlier Saturation Index (LSI) will be increased to a positive value.

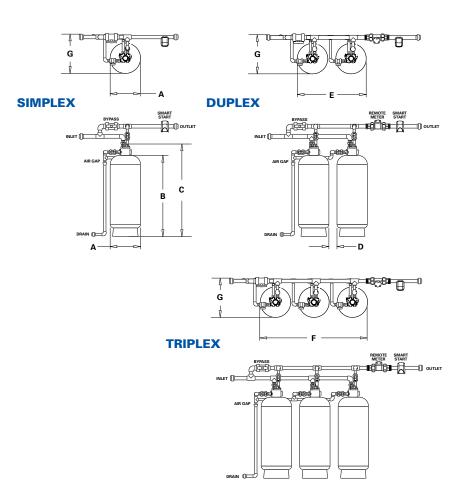
HYDRUS—The Right Choice

Kinetico's Hydrus valve is the right multi-port valve for your filtration applications. Hydrus is the only valve capable of offering treated or filtered water backwash to enhance the cleaning process. Enhanced cleaning results in longer filter runs, improved water quality and longer media life. The non-metallic valve is non-corrosive and designed to withstand even the most harsh environments.

Filter backwash can be initiated by elapsed time, amount of water processed or by pressure differential. Ask your representative for more information.

Kinetico's Macrolite media and the Hydrus valve carry NSF/ANSI 61 Certification.

Kinetico Macrolite also has ETV for surface water treatment and arsenic removal.



	Flow @ 15 psi Loss (gpm)	Flow @ 25 psi Loss (gpm)	Backwash Flow Rate Per Tank (gpm)	Media Volume Per Tank	Backwash Volume (gallons)	Application	Backwash Time (minutes)	Tanks
MACROLITE								
H118m	18	25	15	2.5 ft ³	300	5 micron	20	$(1) 18 \times 65$
H121m	25	30	20	3.5 ft ³	400	5 micron	20	$(1) 21 \times 62$
H124m	30	40	25	5 ft ³	500	5 micron	20	$(1) 24 \times 65$
H130m	50	60	40	8 ft ³	800	5 micron	20	$(1) 30 \times 72$
H136m	70	85	55	12 ft ³	1,100	5 micron	20	$(1) 36 \times 72$
H142m	75	100	75	14 ft ³	1,500	5 micron	20	$(1) 42 \times 72$
CARBON								
H118c	15	20	20	3 ft ³	400	Dechlor/Organics	20	(1) 18 × 65
H121c	20	25	25	4 ft ³	500	Dechlor/Organics	20	$(1) 21 \times 62$
H124c	30	40	35	6 ft ³	700	Dechlor/Organics	20	$(1) 24 \times 65$
H130c	40	50	55	10 ft ³	1,100	Dechlor/Organics	20	$(1) 30 \times 72$
H136c	60	70	75	14 ft ³	1,500	Dechlor/Organics	20	$(1) 36 \times 72$
CALCITE								
H118pH	10	15	15	3 ft ³	300	raise pH	20	(1) 18 × 65
H121pH	15	20	20	4 ft ³	400	raise pH	20	$(1) 21 \times 62$
H124pH	20	25	25	6 ft ³	500	raise pH	20	$(1) 24 \times 65$
H130pH	30	40	40	10 ft ³	800	raise pH	20	$(1) 30 \times 72$

System Type	A	В	С	D	E	F	G
HS X18s	18	68	83	4	40	62	28
HS X21s	21	65	80	4	46	71	31
HS X24s	24	68	83	4	52	80	34
HS X30s	30	86	101	4	64	98	40
HS X36s	36	83	98	4	76	116	46
HS X42s	42	95	110	4	88	134	52

Note A: The "X" in the system size description refers to the number of tanks: Simplex = 1, Duplex = 2, Triplex = 3

Valve Connection	Pipe Size (inches)
Inlet	2
Outlet	2
Drain	2

